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Abstract

For complex constants A and B with |B| ≤ 1, A 6= B, let S∗[A,B] be

the class consisting of normalized analytic functions f satisfying zf ′(z)
f(z) ≺

1+Az
1+Bz . The radius of starlikeness, the radius of strong-starlikeness,
and the radius of parabolic-starlikeness are obtained for functions in
S∗[A,B]. Consequences of these results are also discussed.

Keywords and Phrases: Starlike functions, Janowski starlike functions,
strongly starlike functions, parabolic starlike functions, subordination, radius
problem.

∗2000 Mathematics Subject Classification. Primary 30C80, 30C45.
†Corresponding author. E-mail: rosihan@cs.usm.my
‡E-mail: maisarah hjmohd@yahoo.com
§E-mail: sklee@cs.usm.my
¶E-mail: vravi@maths.du.ac.in



254 Rosihan M. Ali, Maisarah Haji Mohd, Lee See Keong, and V. Ravichandran

1. Introduction and Motivation

Let A denote the class of all analytic functions f defined on the open unit
disk ∆ := {z ∈ C : |z| < 1} and normalized by the conditions f(0) = 0,
f ′(0) = 1, and let S be the subclass of A consisting of univalent functions.
For f and g in A, a function f is subordinate to g, written as f(z) ≺ g(z),
if there is an analytic function w satisfying w(0) = 0 and |w(z)| < 1, such
that f(z) = g(w(z)), z ∈ ∆. In the event that g is univalent on ∆, then f is
subordinated to g is equivalent to f(∆) ⊂ g(∆) and f(0) = g(0).

Let φ be an analytic function with positive real part on ∆, φ(0) = 1,
φ′(0) > 0, and φ maps ∆ onto a region starlike with respect to 1 and symmetric
with respect to the real axis. Let S∗(φ) denote the class of functions f in S
satisfying

zf ′(z)

f(z)
≺ φ(z).

The class S∗(φ) was introduced by Ma and Minda [8]. The class S∗[β] consist-
ing of starlike functions of order β, 0 ≤ β < 1 and the class S∗[α, β] of Janowski
starlike functions are special cases of S∗(φ) where φ(z) := (1+(1−2β)z)/(1−z)
and φ(z) := (1 + αz)/(1 + βz) (−1 ≤ β < α ≤ 1) respectively. For
0 < α ≤ 1, S∗((1+z

1−z )α) is the class of strongly starlike functions f satisfy-
ing |arg(zf ′(z)/f(z))| < απ/2.

Every convex function f in ∆ maps the circle |z| = r < 1 onto a convex
arc. However, it need not map every circular arc about a center in ∆ onto a
convex arc. This motivated the investigation of uniformly convex functions. A
function f ∈ S is uniformly convex [6] if f maps every circular arc γ contained
in ∆ with center ζ ∈ ∆, onto a convex arc. Denote the class of all uniformly
convex functions by UCV . Ma and Minda [7] and Ronning [19], independently
showed that a function f is uniformly convex if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ (z ∈ ∆).

Thus, a function f ∈ UCV if the quantity 1 + (zf ′′(z)/f ′(z)) lies in the
parabolic region Ω = {u+ iv : v2 < 2u− 1}.

A corresponding class Sp consisting of parabolic starlike functions f , where
f(z) = zg′(z) for g in UCV , was introduced in [19]. Clearly a function f is in
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Sp if and only if

Re

(
zf ′(z)

f(z)

)
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ (z ∈ ∆).

A survey of these functions may be found in [18], while radius problems
associated with the classes UCV and Sp are found in [4, 16, 14, 12, 20, 21].
For further properties of uniformly convex functions, see [2, 1, 3, 6, 9, 18, 17,
13, 11, 15, 22, 25].

The radius of a property P in a set of functionsM, denoted by RP(M), is
the largest number R such that every function in the set M has the property
P in each disk ∆r = {z ∈ ∆ : |z| < r} for every r < R. For example, the
radius of convexity in the class S is 2−

√
3.

Let the class S∗[A,B] be defined by

S∗[A,B] :=

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 + Az

1 +Bz
, A,B ∈ C, A 6= B, |B| ≤ 1, z ∈ ∆

}
.

For A = 1− 2β, β > 1 and B = −1, denote the class S∗[1− 2β,−1] by M(β).
Equivalently, M(β) can be expressed in the form

M(β) :=

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
< β, z ∈ ∆

}
.

The class M(β) was investigated by Uralegaddi et al. [26], while a subclass of
M(β) was investigated by Owa and Srivastava [10]. For a fixed nonzero com-
plex number a, let S∗[A,B, a] denote the family of Janowski starlike functions
of complex order a consisting of analytic functions f ∈ A satisfying

1 +
1

a

(
zf ′(z)

f(z)
− 1

)
≺ 1 + Az

1 +Bz
, (−1 ≤ B < A ≤ 1, z ∈ ∆). (1.1)

In this paper, several radius problems are investigated. Specifically, we
compute the radii of starlikeness, strong starlikeness, and parabolic starlikeness
for the class S∗[A,B]. For this purpose, we first determine the image of the disk
|z| ≤ r under a function subordinated to a particular bilinear transformation.
The S∗[β] and M(β) radii are then computed by finding lower and upper
bounds for the quantity Re(zf ′(z)/f(z)). The S∗[A,B]-radius of the class
S∗[C,D] is computed by using the corresponding superordinate function.
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The radius of strong starlikeness and parabolic starlikeness cannot be com-
puted by estimating the real part of the quantity zf ′(z)/f(z) as these classes
are not associated with half-planes. Therefore, we determine the circular disk
containing the image of zf ′(z)/f(z) and use it to compute these radii. Several
known results relating to radii problems are shown to be simple consequences
of the results obtained. Unless explicitly stated otherwise, it is assumed that
the complex constants A and B satisfy A 6= B and |B| ≤ 1.

2. Radius of Starlikeness of order β

If f ≺ g, then |f ′(0)| ≤ |g′(0)| and f(∆r) ⊂ g(∆r), where ∆r is the disk
|z| ≤ r < 1. This is called the Lindelöf subordination principle. Let p be
analytic in ∆ with p(0) = 1. Consider

p(z) ≺ q(z) :=
1 + Az

1 +Bz
.

For r < 1, the image of the disk |z| ≤ r under the map q is clearly a circular
disk. Solving for z in terms of q, the inequality |z| ≤ r becomes

|q(z)− 1| ≤ r|A− q(z)B|.

This inequality may be expressed in the form∣∣∣∣q(z)− 1− ABr2

1− |B|2r2

∣∣∣∣ ≤ |B − A|r1− |B|2r2
.

By using the Lindelöf subordination principle, it then follows that∣∣∣∣p(z)− 1− ABr2

1− |B|2r2

∣∣∣∣ ≤ |B − A|r1− |B|2r2
(|z| ≤ r < 1). (2.1)

Theorem 2.1. Let β ≥ 0, and f ∈ S∗[A,B]. Then

(1) f ∈ S∗[β] in |z| ≤ R(β) for 0 ≤ β < 1, and

(2) f ∈M(β) in |z| ≤ R(β) for β > 1,
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where

R(β) := min

{
2|(1− β)|

|B − A|+ |(2β − 1)B − A|
, 1

}
.

In particular, the radius of starlikeness of order β for functions in the class
S∗[A,B, a], (−1 ≤ B < A ≤ 1), is

Ra(β) = min

{
2(1− β)

|a| |A−B|+ |aA+ (2− 2β − a)B|
, 1

}
.

These results are sharp.

Proof.

Let f ∈ S∗[A,B]. With p(z) = zf ′(z)/f(z), the inequality (2.1) yields

Re
zf ′(z)

f(z)
≥ Re

(
1− ABr2

1− |B|2r2

)
− |B − A|r

1− |B|2r2
.

The last inequality shows that

Re
zf ′(z)

f(z)
− β ≥ 1− β − |B − A|r − (ReAB − β|B|2)r2

1− |B|2r2
≥ 0

provided 1− β − |B − A|r − (ReAB − β|B|2)r2 ≥ 0. Solving for the positive
real root yields

r = Rβ =
2(1− β)

|B − A|+ |(2β − 1)B − A|
.

Therefore the S∗[β]-radius for the class S∗[A,B] is R(β) = min {1, Rβ}.
It is easily seen computationally that the result is sharp for the function

f ∈ A given by

f(z) =

{
z(1 +Bz)(A−B)/B, B 6= 0
zeAz, B = 0.

(2.2)

For the function f ∈ S∗[A,B], the inequality (2.1) again gives

Re

(
zf ′(z)

f(z)
− 1− ABr2

1− |B|2r2

)
≤ |B − A|r

1− |B|2r2
(|z| ≤ r < 1)
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and therefore

Re
zf ′(z)

f(z)
− β ≤ Re

(
1− ABr2

1− |B|2r2

)
+
|B − A|r

1− |B|2r2
− β

=
1− β + |B − A|r − (ReAB − β|B|2)r2

1− |B|2r2
≤ 0

provided 1−β+ |B−A|r− (ReAB−β|B|2)r2 ≤ 0. This inequality is satisfied
for 0 ≤ r ≤ R where

r = RM =
2(β − 1)

|B − A|+ |(2β − 1)B − A|
.

Therefore the M(β)-radius for f ∈ S∗[A,B] is RM(β) = min {RM, 1}. The
result is sharp for the function f given in (2.2).

Next let f ∈ S∗[A,B, a]. Then

1 +
1

a

(
zf ′(z)

f(z)
− 1

)
≺ 1 + Az

1 +Bz
,

and hence
zf ′(z)

f(z)
≺ 1 + [B + a(A−B)]z

1 +Bz
.

It follows that
S∗[A,B, a] = S∗[B + a(A−B), B].

Thus, the radius of starlikeness of order β for functions in the class S∗[A,B, a]
follows from the radius of starlikeness of order β for the class S∗[A,B]. This
radius is sharp for the extremal function

f(z) =

 z(1 +Bz)a(A−B)/B B 6= 0,

zeaAz B = 0.

The case when A and B are real numbers yields the following corollary:

Corollary 2.1. [16] Let A,B ∈ R, A < B and 0 ≤ β < 1. If f ∈ S∗[A,B],
then the function f belongs to S∗[β] in |z| ≤ R(β) where

R(β) =

{
1 ( 1+A

1+B
≥ β)

1−β
βB−A ( 1+A

1+B
≤ β).
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Corollary 2.2. [16] Let A,B ∈ R, A < B < 1 and β > 1. If f ∈ S∗[A,B],
then the function f is in M(β) for |z| ≤ RM(β) where

RM(β) =

{
1 ( 1−A

1−B ≤ β)
β−1
βB−A ( 1−A

1−B ≥ β).

The idea of estimating the real part of zf ′(z)/f(z) cannot be used to find
S∗[A,B]-radius of the class S∗[C,D]. We can use the disk containing the
image of zf ′(z)/f(z) to find the radius. However, we shall obtain the radius
by making use of the superordinate function.

Theorem 2.2. Let A,B,C,D ∈ C, A 6= B, |B| ≤ 1, D 6= C, and |D| ≤ 1. If
f ∈ S∗[C,D], then the S∗[A,B]-radius, R[A,B] of f , is given by

R[A,B] = min

{
|A−B|

|C −D|+ |AD −BC|
, 1

}
.

Proof.

Let P and Q be functions defined by

P (z) =
1 + Az

1 +Bz
and Q(z) =

1 + Cz

1 +Dz
.

Since
zf ′(z)

f(z)
≺ Q(z),

the S∗[A,B]-radius is the number R (0 < R ≤ 1) such that Q(Rz) ≺ P (z) for
z in ∆. Define the function H by

H(z) = P−1(Q(z)).

Since

P−1(w) =
w − 1

A−Bw
,

a computation yields

H(z) =
(C −D)z

(A−B) + (AD −BC)z
.
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Therefore

|H(Rz)| ≤ |C −D|R
|A−B| − |AD −BC|R

≤ 1

for

|z| = R ≤ |A−B|
|C −D|+ |AD −BC|

.

If −1 ≤ B < A ≤ 1 and −1 ≤ D < C ≤ 1, the S∗[C,D, b]-radius of the
functions in the class S∗[A,B, a] is

R[C,D,b] = min

{
|b| (C −D)

|a| (A−B) + |BD(a− b) + bBC − aAD|
, 1

}
.

This radius reduces to a result in [4, Theorem 2.3, p. 306] in the special case
when a = b = 1 and A,B,C,D are real numbers satisfying −1 ≤ B < A ≤ 1
and −1 ≤ D < C ≤ 1.

Our method works even in a more general setting. For a univalent function
φ with φ(0) = 1 and a nonzero complex number a, let S∗a(φ) be the class of
functions f ∈ A satisfying the subordination

1 +
1

a

(
zf ′(z)

f(z)
− 1

)
≺ φ(z).

A function in the class S∗a(φ) is called a starlike function of complex order a
with respect to φ. Note that the radius of starlikeness of complex order b with
respect to ψ for the class S∗a(φ) is computed by finding the largest radius r < 1
satisfying ∣∣∣∣ψ−1(a[φ(rz)− 1] + b

b

)∣∣∣∣ ≤ 1.

Corollary 2.3. Let A,B,C,D ∈ C, A 6= B, |B| ≤ 1, D 6= C, and |D| ≤ 1.
Then the class S∗[C,D] is a subclass of S∗[A,B] if and only if

|AD −BC| ≤ |A−B| − |C −D|.

In the special case where the parameters A,B,C,D are real, the class
S∗[A,B, a] is a subclass of S∗[C,D, b] if and only if

|BD(a− b) + bBC − aAD| ≤ |b| (C −D)− |a| (A−B).

The above corollary is an extension of the fact that S∗[α] ⊂ S∗[β] if and only
if α ≥ β.
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3. Radius of Parabolic Starlikeness

In [17] the class Sp of parabolic starlike functions was generalized by introduc-
ing a parameter β, −1 ≤ β < 1. The class Sp(β) is a subclass of A consisting
of functions f ∈ A satisfying∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < Re

(
zf ′(z)

f(z)

)
− β (|z| ∈ ∆).

Observe that the values of the functional zf ′(z)/f(z) lies in the parabolic
region

Ω :=

{
u+ iv : v2 < 2(1− β)

(
u− β + 1

2

)}
. (3.1)

In this section, the Sp(β)-radius of S∗[A,B] for A,B ∈ R, A < B and |B| ≤ 1
is determined.

Theorem 3.1. Let β < 1, A < B, and |B| ≤ 1. Let R1 be given by

R1 := min

{
2(1− β)

B − A+
√

(B − A)2 + 4B2(1− β)2
, 1

}
,

R2 be the largest number in (0, 1] such that 1 ≥ (B(1 + β)− 2A)r + β for all
r ∈ [0, R2], and R3 be the largest number in (0, 1] such that A + B(1− 2β) ≥
2B3(1− β)r2 for all r ∈ [0, R3]. If f ∈ S∗[A,B], then f satisfies

Re

{
zf ′(z)

f(z)

}
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣+ β (|z| < R),

where

R =

{
R2 if R2 ≤ R1

R3 if R2 > R1.

Proof.

Since
zf ′(z)

f(z)
≺ 1 + Az

1 +Bz
,

it follows from the inequality (2.1) that∣∣∣∣zf ′(z)

f(z)
− 1− ABr2

1−B2r2

∣∣∣∣ ≤ (B − A)r

1−B2r2
, (|z| ≤ r < 1). (3.2)
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By letting w(z) = zf ′(z)
f(z)

= u + iv, the points on the boundary of the disk in

(3.2) are given by

Rew(z) =
(1− ABr2) + (B − A)r cos θ

1−B2r2
, Imw(z) =

(B − A)r sin θ

1−B2r2
. (3.3)

Since

Re
zf ′(z)

f(z)
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣+ β

is equivalent to

(Imw)2 < 2(1− β)

(
Rew(z)− 1 + β

2

)
, (3.4)

substituting (3.3) into (3.4) and simplifying leads to

T (x) := (B − A)2r2x2 + 2(1− β)(B − A)(1−B2r2)rx

+2(1− β)(1−B2r2)(1− ABr2)
− (1− β2)(1−B2r2)2 − (B − A)2r2 ≥ 0,

where x = cos θ. We need to find r = R such that T (x) ≥ 0 for all x ∈ [−1, 1].
Since

T ′(x) = 2(B − A)2r2x+ 2(1− β)(B − A)(1−B2r2)r,

we see that T ′(x) = 0 for

x = x0 = −(1− β)(1−B2r2)

(B − A)r
.

Since β < 1, A < B and |B| ≤ 1, then x0 < 0. If x0 ≤ −1, it is required
that T (−1) ≥ 0 and if −1 < x0 < 0, then T (x0) ≥ 0. Note that x0 ≤ −1 is
equivalent to

r ≤ 2(1− β)

B − A+
√

(B − A)2 + 4B2(1− β)2
.

The condition T (−1) ≥ 0 is equivalent to

1 ≥ (B(1 + β)− 2A)r + β,

while T (x0) ≥ 0 yields

A+B(1− 2β) ≥ 2B3(1− β)r2.
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For A,B ∈ R, A < B and |B| ≤ 1, let R1, R2 and R3 be as in the
hypothesis. If R2 ≤ R1, then the disk (3.2) will be inside the parabolic region
(3.1) if and only if r ≤ R2. If R2 > R1, then the disk (3.2) will be inside the
parabolic region (3.1) if and only if r ≤ R3. This completes the proof.In the
special case β = 0, the following result is obtained:

Corollary 3.1. [16] For A,B ∈ R, A < B and |B| ≤ 1, let R1 be given by

R1 := min

{
1,

2

B − A+
√

(B − A)2 + 4B2

}
.

and let R2 be the largest number in (0, 1] such that 1 ≥ (B − 2A)r for all
r ∈ [0, R2] and R3 be the largest number in (0, 1] such that A+B ≥ 2B2r2 for
all r ∈ [0, R3]. If f ∈ S∗[A,B], then the Sp-radius is given by

R =

{
R2 if R2 ≤ R1

R3 if R2 > R1.

4. Radius of Strong Starlikeness

Recall that a function f ∈ A is strongly starlike of order γ, 0 < γ ≤ 1, if f
satisfies the subordination

zf ′(z)

f(z)
≺
(

1 + z

1− z

)γ
,

or equivalently ∣∣∣∣arg

(
zf ′(z)

f(z)

)∣∣∣∣ ≤ π

2
γ.

In other words, the values of zf ′(z)/f(z) are in the sector |y| ≤ tan(γπ/2)x,
x ≥ 0. In this section we compute the radius of strong starlikeness for the
class S∗[A,B]. The following lemma will be required:

Lemma 4.1. [4] If Ra ≤ (Re a) sin(πγ/2) − (Im a) cos(πγ/2), Im a ≥ 0 for
a ∈ C, then the disk |w − a| ≤ Ra is contained in the sector | argw| ≤ πγ/2,
0 < γ ≤ 1.
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Theorem 4.1. Let 0 < γ ≤ 1 and Im(AB) ≤ 0. If f ∈ S∗[A,B], then
the function f is strongly starlike of order γ in |z| < R(γ) where R(γ) =
min{1, Rγ}, and

Rγ =
2 sin(πγ/2)

|B −A|+ [|B −A|2 + 4 sin2(πγ/2)Re(AB)− 4 cos(πγ/2) sin(πγ/2)=(AB)]
1
2

.

Proof.

The inequality (2.1) yields∣∣∣∣zf ′(z)

f(z)
− a
∣∣∣∣ ≤ Ra,

where

a =
1− ABr2

1− |B|2r2
and Ra =

|B − A|r
1− |B|2r2

.

The condition in Lemma 4.1 is satisfied if[
Im(AB) cos(

πγ

2
)− Re(AB) sin(

πγ

2
)
]
r2 − |B − A|r + sin(

πγ

2
) ≥ 0.

Since sin(πγ
2

) ≥ 0, the above quadratic inequality yields
r = Rγ

= 2 sin(πγ/2)

|B−A|+[|B−A|2+4 sin2(πγ/2)Re(AB)−4 cos(πγ/2) sin(πγ/2) Im(AB)]
1
2
.

Thus f is strongly starlike of order γ in |z| < R(γ) where R(γ) = min{1, Rγ}.
Silvia [24] defined the class SP (α,A,B) consisting of functions f in A

satisfying

eiα
zf ′(z)

f(z)
≺ cosα

1 + Az

1 +Bz
+ i sinα, z ∈ 4,

with 0 ≤ α < 1,−1 ≤ B < A ≤ 1.

Corollary 4.1. Let f ∈ SP (α,A,B), −1 ≤ B < A ≤ 1, 0 ≤ α < 1,
0 < ρ ≤ 1, and B sin 2α ≤ 0. Then the function f is strongly starlike of order
ρ in |z| < R(ρ) where R(ρ) = min{1, Rρ}, and

Rρ =
2 sin δ

(A−B) cosα+
√
(A−B)2 cos2 α+ 4B2 sin2 δ + 4B(A−B) sin δ cosα sin(α+ δ)

where δ = πρ/2.
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Proof.

The function f is in SP (α,A,B) if

zf ′(z)

f(z)
≺ 1 + (A cosα + iB sinα)e−iαz

1 +Bz
.

Replacing A with (A cosα+Bi sinα)e−iα in Theorem 4.1 leads to the desired
result.

Remark 4.1. Corollary 4.1 was also obtained by Gangadharan et al. [4].
However, there was a slight mistake in their result and a complete proof is
given above. See also [23].
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